
Final Report EECE474 Team 3

Revision #18 Page 1

THE UNIVERSITY OF BRITISH COLUMBIA

Department of Electrical and Computer Engineering

Final Report
EZ-FLY RC Helicopter

7/24/2007
EECE474 Team 3
Scott Davis

Roy Ho

Henry Kwan

Louis Liang

Sijia Wang

Final Report EECE474 Team 3

Revision #18 Page ii

ABSTRACT

This document gives details on the EZ-Fly four rotor radio controlled helicopter. While they may seem

simple, helicopters are naturally unstable aircraft with many subtleties. Unless designed very carefully,

they are subject to disturbances in the air, rendering them very difficult to control and stabilize. The

electronics need to be carefully managed, since the current drawn by the four motors is on the order of 8

Amps, an amount which may damage sensitive components. The most challenging aspect of designing an

auto-stabilizing helicopter of this nature is the software – programming a microcontroller to deal with the

constant tilt corrections, combined with the input and output port processing, is a time-consuming,

complicated task. The task is further compounded by difficulties introduced by noise in the signal

processing, by the difficulties in getting accurate readings from the sensors due to the dynamic and

always moving system, which changes even readings of gravity, due to acceleration. Despite the myriad

problems involved in designing a stable helicopter, it is not impossible. It cannot be done quickly, nor

cheaply, but it can be done.

Final Report EECE474 Team 3

Revision #18 Page iii

TABLE OF CONTENTS

Abstract ... ii

Table of Contents ... iii

List of Figures ... iv

List of Tables ... v

Introduction ... 1

Project Background .. 2

Design Requirements and Goals ... 3

Helicopter Frame Design ... 3

Flight Control ... 4

Motor Control ... 4

Helicopter Stability .. 5

Microcontroller ... 5

RF Link ... 5

Power .. 6

Overall Design Goal ... 6

Results ... 7

Mechanical Design ... 7

Electronic control .. 9

Schematics .. 9

Electronic Speed Control .. 10

RF communication .. 13

Measuring Tilt ... 14

System Control ... 17

Microcontroller ... 19

Analog to Digital Conversion(ADC) ... 20

Ultrasonic Range Finder Measurement .. 21

Pulse Width Measurement ... 21

Setup for Input Capture Mode ... 22

Pulse Width Modulation ... 23

Motor Speed Control .. 24

PCB Layout .. 26

Voltage Regulator ... 27

Data Transfer .. 28

Assessment & Analysis ..29

References...31

Appendix A – C Code for Microcontroller .. 1

Final Report EECE474 Team 3

Revision #18 Page iv

LIST OF FIGURES

Figure 1 – Typical Beginner’s RC Helicopter .. 2

Figure 2 – SilverLit X-UFO R/C Helicopter .. 2

Figure 3 – Draganflyer SAVS Stabilized Aerial Video System Gyro Stabilized RC Helicopter 2

Figure 4 – Axes of Movement & Example of Frame Design .. 3

Figure 5 – First helicopter frame design .. 7

Figure 6 – Current Helicopter Frame Design ... 7

Figure 7 – Foam block for housing helicopter electronics ... 8

Figure 8 – Block diagram of Helicopter Circuitry ... 9

Figure 9 – Optocoupler (Wikipedia, 2007) .. 10

Figure 12 – Duty Cycle Controlled Motors .. 11

Figure 10 – MosFet CHIP (STMicroelectronics, 2007) ... 11

Figure 11 – MosFet Gates (STMicroelectronics, 2007) .. 11

Figure 13 – H-Brdige connected to Motors ... 12

Figure 14 – RF Transmitter chip(Rentron) ... 13

Figure 15 – RF Receiver Chip (Rentron) ... 13

Figure 16 – 555 Timer circuit attached to RF Transmitter... 14

Figure 17 – ADXL330 Accelerometer Circuit ... 15

Figure 18 – ADXL330 Accuracy .. 16

Figure 19 – EZ1 Sonar Module... 17

Figure 20 – Matlab Simulations for controller response time... 18

Figure 21 – Feedback Control Loop of Helicopter ... 18

Figure 22 – Hardware Configuration of Microcontroller ... 19

Figure 23 – ADMUX Registers for ADC .. 20

Figure 24 – ADCSRA - ADC Control and Status Register A ... 21

Figure 25 – ADCSRB - ADC Control and Status Register B ... 21

Figure 26 – Pulse Width Measurement ... 22

Figure 27 – TCCR1A Timer 1 Control Register A .. 22

Figure 28 – TCCR1B Timer 1 Control Register B .. 22

Figure 29 – TCCR1A Timer/Counter1 Control Register A .. 23

Figure 30 – TCCR1B Timer/Counter1 Control Register B ... 23

Figure 31 – Phase & Frequency Correct PWM Timing Diagram .. 24

Figure 32 – Circuit diagram for whole system ... 26

Figure 33 – PCB submitted .. 27

Figure 34 – Schematic for 5V Voltage Regulator ... 28

Figure 35 – Schematic of RS232 Connection to Microcontroller .. 28

Figure 36 – EZ-Fly Helicopter ... 30

Final Report EECE474 Team 3

Revision #18 Page v

LIST OF TABLES

Table 1 – 3 axes Accelerometer Output .. 16

Table 2 – Register Setup for PWM .. 23

Table 3 – Observation of Duty Cycle Changes From Turning Helicopter... 25

Table 4 – Ultrasonic sensor sensitivity .. 25

Final Report EECE474 Team 3

Revision #18 Page 1

INTRODUCTION

Radio Controlled helicopters are wonderfully entertaining devices that can provide hours of

entertainment. However, they are also very costly, and have a steep learning curve. RC helicopters come

in a variety of sizes, from micro helicopters that fit in the palm of your hand, to gas powered models

which can be up to about half the size of a small car. The larger the model, the more expensive it is, and

the more expert you need to be to control it. Even with a beginner’s model, it can take weeks of practice

for a novice user to learn how to even get the aircraft to hover with any degree of stability. Due to the

complex nature of helicopter aviation, the radio transmitters often need more than 6 frequency channels

which the pilot needs to use to control all the different axes of movement.

 In standard RC helicopters, there often is no dedicated micro-controller. There are simply

mechanical and electrical controls which are all controlled indirectly by the pilot through the RF link.

There are controls for adjusting the aircraft’s yaw, pitch, roll, and altitude, which each need to be adjusted

in real-time for stable flight. And when the pilot slips up and makes a small mistake, gravity, as it always

does, eventually wins the argument and a costly crash occurs.

As a result, people who don’t have the required time or money to invest in this hobby are unable

to participate in it. For our EECE474 design project, we seek to design and build a radio controlled

helicopter that is easy to fly, and which can be built with a modest budget – in our case, under $400.

 This report contains details on efforts made by others in this area, then goes on to explain our

goals for the project, and how we managed to implement them, with differing degrees of success.

Final Report EECE474 Team 3

Revision #18 Page 2

PROJECT BACKGROUND

To penetrate the beginner’s market in the RC helicopter

hobby industry, there are products which purport to be easy to fly

right out of the box. These beginner’s helicopters often use fixed

pitch rotors, meaning that the device cannot in practice be steered

and directed all that effectively, since all it can do is move up and

down, and (in some cases) change direction. We seek to build a

helicopter that can be steered in any direction, easily.

Researchers at MIT have been using commercially available

RC helicopters and modifying them to be controlled by computer

algorithms, complex enough that multiple aircraft can be controlled

to work together to perform various UAV tasks, such as search and rescue, or vehicle tracking. While this

approach is novel, and significant progress has been made, that type of application is useful more for

military or law-enforcement applications, instead of the average consumer. (MIT, 2007)

 A company called SilverLit has released a

product that is basically a commercially available version

of what we propose to build. It is a four rotor gyro

stabilized toy helicopter that claims to be very easy to fly,

with controls for up/down, left/right and forward/back. It

is also not overly expensive, coming in at about the $200

range (Silverlit Toys Manufactory Ltd., 2007). However,

upon reading user’s comments and reviews, the reliability

of this product seems to be in question, with reports of

fragile components, and denials of its ease of use

(DiBona, 2006).

Also available are more complete, thoroughly

built machines that are full of features and abilities, but

cost significantly more than what we’re striving to do.

An example is the DraganFlyer® brand of helicopters

(see Figure 3), which can cost in excess of $2000.

The steep learning curve of piloting RC

helicopters is for the most part taken as a given, as part

of the territory of the hobby. We seek to change that.

FIGURE 2 – SILVERLIT X-UFO R/C HELICOPTER

(R/C AIRPLANE WORLD, 2007)

FIGURE 1 – TYPICAL BEGINNER’S RC

HELICOPTER

(CRAZYABOUTGADGETS, 2007)

FIGURE 3 – DRAGANFLYER SAVS STABILIZED AERIAL

VIDEO SYSTEM GYRO STABILIZED RC HELICOPTER

(DRAGANFLY INNOVATIONS INC., 2007)

Final Report EECE474 Team 3

Revision #18 Page 3

DESIGN REQUIREMENTS AND GOALS

HELICOPTER FRAME DESIGN

 In line with the goal of providing a stable, easy-to-fly helicopter, we will design it to be a four-

rotor helicopter. A four rotor helicopter is the simplest design mechanically, since the four rotors

automatically balance out the torque of the motors, something which needs to be dealt with in single-

rotor designs with a tail rotor.

FIGURE 4 – AXES OF MOVEMENT & EXAMPLE OF FRAME DESIGN

Figure 4 above shows the general design of a four-rotor helicopter. It will consist of a main body

in the center which houses the electronics; four booms extend out from this main body at 90 degrees to

each other, and at the end of each lies a motor mount, a DC motor, and a gear for the rotor. As can be

seen from the figure, each opposite pair of rotors rotates in opposite directions to provide the torque

balance. This design simplifies things, since there is no need to implement individual rotor tilting, and is

also inherently more stable than a single or even dual-bladed design, due to the spread-out nature of the

rotors. Figure 4 also highlights the dynamics of helicopter flight – it shows the axes of movement which

we will need to control. Because the only source of energy to the system comes from the four sets of

rotors, all movement must come from modifying the level of downward thrust provided by each rotor. For

Final Report EECE474 Team 3

Revision #18 Page 4

example, to turn the aircraft left, we would increase the thrust provided by the right rotor blade while

simultaneously decreasing the thrust of the left rotor blade. This would cause the aircraft to roll to the

left, causing the net downward force to be at a slight angle to the Normal, introducing a lateral force

component, which would cause the aircraft to move to the left. The same principle applies when moving

in any of the other directions.

FLIGHT CONTROL

 To differentiate the EZ-Fly helicopter from other commercially available helicopters, we wanted

to give as much control of the helicopter to the on-board microcontroller as possible, i.e. we wanted the

input provided by the user to be as simple as possible. To this end, we plan on developing a control

method that will allow the user to provide control to the following directions of flight for the helicopter:

 Up/Down

 Left/Right

 Forward/Back

There are different ways of accomplishing this that would provide the same result. One possible

method is to use a lever/switch system, where each direction pair (up/down, right/left, forward/back)

would get its own lever with up to 255 levels of accuracy (i.e. for an 8 bit digital signal). Thus, the more

you move the lever, the more the helicopter would move in that direction.

 An alternative way would be to use simple pushbuttons, with a specific amount of direction

change per button push.

 Both of these alternatives would require encoding the information into a format easily

transmittable over RF to the helicopter, where the signal would be decoded. Either way, the user would

not have to deal with stabilizing the helicopter, since that would be taken care of by the onboard

electronics. Due to the time constraints of this project, we have decided to simplify our goal for the end of

the project, and not implement any direction changing method. Rather, we will require the helicopter to

simply respond to a “Go” signal from the RF handheld transmitter, at which point the helicopter will

execute a simple takeoff-up-hover-down-land flight pattern. However, to fully implement the ability to

turn and move forward at the user’s discretion, the only changes necessary would be both in the

software, dealing with the user-provided course changes, as well as in the RF transmitter circuit.

MOTOR CONTROL

 In order to provide stable flight, we need to be able to control each motor independently, with a

significant degree of accuracy. Since the DC motors each draw a lot of current when in operation, we need

a way of controlling their speed with the microcontroller that would not hurt the sensitive IC’s due to the

large current draw. We propose to do this with an H-bridge, setup with optocouplers to completely

isolate the microcontroller circuit from the motor circuit. Each motor would get its own optocoupler and

H-bridge, which receives as input a Pulse-Width-Modulated (PWM) signal from the microcontroller. It will

be the Duty Cycle of the PWM signal that will dictate the speed at which the motors run. The

optocouplers prevent any back EMF or noise to disrupt the PWM signal coming from the microcontroller.

Final Report EECE474 Team 3

Revision #18 Page 5

HELICOPTER STABILITY

 If it is to fly by itself with minimal user intervention, there needs to be a system to automatically

stabilize the helicopter while in flight. Otherwise, the slightest gust of wind will drive it unstable and cause

a most unfortunate crash.

 To accomplish this, we need a device capable of measuring the tilt of the helicopter, or in other

words, we need to know when the angle of the helicopter changes from 0 degrees to anything else. If the

microcontroller can be told instantly when the angle of flight changes, it can make minute changes, many

times per second, to the duty cycle of each individual motor’s control signal, compensating for the angle.

For example, if the helicopter starts to tilt to the right, the sensor would detect the change in angle, notify

the microcontroller, which would then slightly increase the power to the right motor, while slightly

decreasing power to the left motor, bringing the helicopter back into level flight. This process would need

to be performed many times per second, and continuously during flight, to ensure stability.

 There are two types of sensors which could help do this: gyroscopes and accelerometers. A

gyroscope would tend to be more accurate and less affected by gravity, but costs significantly more than

an accelerometer. Thus for budget concerns, we will use a multi-axis accelerometer to monitor the X and

Y axes of tilt. The outputs from the accelerometer are analog signals which can be tied directly to the

microcontroller’s Analog to Digital ports.

MICROCONTROLLER

 The EZ-Fly helicopter will need a brain if it is to operate as desired. Requirements for the

microcontroller include:

 Small, easy to program

 On-chip memory to hold the program

 Minimum 3 A/D ports for sensor inputs

 Minimum 4 output ports for the PWM signal to the motors

 Input port for RF signal

We also need the microcontroller to have a setup such that it is easy and quick to download the

program to its memory.

RF LINK

 To control the helicopter remotely, we will need some form of RF communication. The more

complicated we make the handheld controller, the more complicated the scheme necessary for RF

transmission. Professional RC helicopters and planes are equipped with multi-channel transmitters, since

the user needs to control several aspects of the flight simultaneously. Due to our limited goal of a “Go”

signal for an on-board flight path, our RF transmitter can stay very simple. We need to transmit a signal,

any signal, which the microcontroller on the helicopter can recognize. To this end, we will use a simple

555 timer IC to produce a square wave pulse which will be transmitted whenever the push-button is

pushed down. The frequency and duty cycle of this pulse are not important, since it is not the nature of

the signal, but merely its existence, that the microcontroller will read. A 9V battery will be sufficient to

power the circuit.

Final Report EECE474 Team 3

Revision #18 Page 6

POWER

 As mentioned above, the DC motors require a significant amount of current. To provide this

current, we will need a battery pack which has sufficient voltage to enable lift-off, but one that is also

lightweight, and can easily handle at least 8A of current draw. Lithium-Polymer batteries are the most

commonly used for this type of application; they come in 3.4V per cell, often tied in multi-cell packs. Since

they are also fairly expensive, a 2 cell 7.4V pack will be all we need for this project.

 To power the microcontroller circuit, RF receiver, and accelerometer, we will need at least two

different voltages: a +5V for the microcontroller circuit, and a +3.3V Vdd source for the accelerometer. A

small 9V will do the trick, combined with two voltage regulators to dial down the voltage for the

microcontroller and for the accelerometer. The RF receiver can be powered by up to 12V, so the 9V from

the battery will work just fine.

OVERALL DESIGN GOAL

 For the EZ-Fly helicopter, the end goal of our project is quite ambitious. The original goal of

having a fully functional helicopter which can be flown in any direction is unrealistic in the given time

frame. So the goal for this time frame is to have the helicopter be able to lift off the ground without any

assistance, and to visibly remain stable in the air for several seconds before landing back onto the ground.

Final Report EECE474 Team 3

Revision #18 Page 7

RESULTS

MECHANICAL DESIGN

 The first design for our

helicopter frame involved using a

Styrofoam block as the material

for the main body. We then had

9mm diameter aluminum tent

poles coming out of the block,

acting as the 4 booms of the

helicopter. Figure 5 shows this

first design.

The poles entered into

the foam block 2/3 of the way

from the bottom, at an angle of

36.5 degrees, all converging at

the bottom of the block in the

center. The plan was to cut a hole

in the top middle of the block for the electronics, feeding the wires through a small channel underneath

the foam to the open ends of the four poles at the bottom. This design was originally conceived as being

more stable, since the thought was that the center of gravity would be far below the sources of lift,

increasing stability.

We soon realized that the motor/rotor system at each apex would be a significant weight factor,

making it more top-heavy than originally thought. A redesign was made, and Figure 6 shows this

replacement design. We returned to the design implemented by the Draganflyer brand of helicopters,

with the booms extending out from the body parallel to the ground. A polycarbonate plastic sheet was

used to bind the poles together in

the center (with screws going

through the plastic into the

aluminum), as well as to provide

a base upon which we could

place the electronics of the

system. This design turned out to

be far more stable, and more firm

and secure than the original

design would have been.

The motor mounts are

attached to the aluminum poles

by means of small aluminum

dowels machined by the ECE

machine shop, with small FIGURE 6 – CURRENT HELICOPTER FRAME DESIGN

FIGURE 5 – FIRST HELICOPTER FRAME DESIGN

Final Report EECE474 Team 3

Revision #18 Page 8

machine screws placed to as to prevent movement. The two wires connected to each DC motor are fed

through the hollow aluminum tubes and pulled out of small wires drilled in the tubes near the center, so

as to be fed up into the electronics.

To house the electronics, we decided to use some of the foam from the original frame idea, cut

into a small block that would fit on the polycarbonate base, and stick the circuit boards to it. This foam

block can be seen in Figure 7.

FIGURE 7 – FOAM BLOCK FOR HOUSING HELICOPTER ELECTRONICS

 The 7.4V Lithium-Polymer battery is inserted into a hole melted out of the interior of the block.

There is a similar hole cut out on the other side of the block for the 9V battery. This foam block is wedged

in-between two plastic risers screwed into the polycarbonate base, so as to be securely, yet not

permanently, installed onto the helicopter frame.

 During testing with the lab’s DC power supplies, it was found that each pair of DC motors drew

the power supply’s maximum current, around 4 amps. So a rough estimate of the total current draw from

the 4 motors is about 8-9 Amps. This works out to be just about right, because the E-flite 7.4V 800mAh 2-

Cell LiPo battery that we purchased has a maximum continuous current draw of 8A, with burst discharges

of up to 12.5A(Hobby Zone, 2007).

 Testing of the stability of the frame design went well – with the motors connected to either the

DC power supply or the battery, the motors provided plenty of lift to enable take-off, but the system, such

as we were testing it without the microcontroller, was inherently unstable. Because all 4 motors were

being powered by the same signal, no auto-stabilizing was occurring. Thus, while holding the frame with

Final Report EECE474 Team 3

Revision #18 Page 9

our hands, any slight movement caused the system to go unstable and veer to one side, requiring a

manual correction with our hand. This aside, the frame itself seemed reasonably well balanced. For

although it was impossible to ensure that each boom was exactly the same length, and that the 4 motors

were exactly equidistant from each other, the differences due to these imperfections are small enough so

as to be easily compensated for electronically.

It was found that without the electronics on board (a not insignificant amount of weight), a

voltage of about 4.7V applied to all 4 motors equally was sufficient to produce take-off. With the

electronics block on board, it was closer to 6V where lift-off occurred.

 The aluminum poles used are strong enough that even when tested at full length (on the

helicopter, they’re used at half length), it took almost all the force a human could apply to bend the pole

any significant amount. The forces the poles are subjected to during flight are nowhere near the forces

applied by two hands trying to bend the pole, and are thus deemed quite strong enough for stable flight.

ELECTRONIC CONTROL

SCHEMATICS

FIGURE 8 – BLOCK DIAGRAM OF HELICOPTER CIRCUITRY

Final Report EECE474 Team 3

Revision #18 Page 10

ELECTRONIC SPEED CONTROL
 In our project, an electronic speed change circuit is required to control the speed of the motor,

which should change depending on the output signal of the Microcontroller. The circuit that would satisfy

this goal is an H-bridge, an electronic circuit which enables smooth control of a DC motor with the use of

electronic components such as MOSFETS and Optocouplers.

 An H-bridge circuit that would be normally used in a robotic project contains 4 MOSFETS and a

single Optocoupler and could control the DC motor in both directions. For the EZ-Fly helicopter, there are

four DC motors and each one of them needs to be controlled by an H-bridge circuit. However, only 1

MOSFET and 1 Optocoupler is required for each H-bridge, since the motors only spin in one direction.

With such a modification to the H-bridge, the electronic components required to build the circuits are

significantly reduced and using less components also benefits our project since we are on a tight budget.

 A single H-bridge circuit consists of one MOSFET, 3 resistors and one Optocoupler. The

Optocoupler is powered by a single output pin of a microcontroller. In the case of our project, the output

from the microcontroller is a Pulse Width Modulated signal. When the Optocoupler is powered, it would

then trigger the MOSFETS. Once the MOSFETS triode mode condition is satisfied, the MOSFET would be

turned on and allow current through the DC motor. However, the MOSFETS would operate at cutoff

mode when the optocoupler is not powered. And therefore the DC motor would stop running.

OPTOCOUPLER

An Optocoupler can be represented graphically as a Light emitting

diode and a Transistor in parallel. However, this transistor has only two

pins: a collector pin and an emitter pin. When the voltage across the LED is

5V, the transistor is triggered and current will flow from the collector to

the emitter.

 The configuration of the Optocoupler in our project is very simple. The positive pin of the LED is

directly connected to the 5 volt battery through a 19 kΩ resistor and the negative pin is connected to the

output of the microcontroller. When the microcontroller outputs 5V, the voltage difference across the

LED is zero and the Optocoupler is turned off. When the microcontroller outputs 0V, the voltage

difference across the LED is 5V which powers on the Optocoupler.

 The emitter of the transistor is connected to ground while the collector is connected both to a

100 kΩ resistor and to the gate pin of the MOSFET. The other end of the 100 kΩ resistor is connected to

the Lithium-Polymer battery. When the Optocoupler is powered, the gate voltage would be at

approximately 0V and the MOSFETS would be turned on.

 The model of Optocoupler we used in this project is LTV847 IC. The other model that is also

available are the QTC4N35—a 6-pin single Optocoupler. This model was used during testing of the H-

bridges because the LTV847 wasn’t available for a long period of time. However, the nature of operation

between QTC 4N35 and the LTV 847 are the same except the fact that one is a 6-pin single Optocoupler IC

while the other is a 16-pin four Optocoupler IC.

FIGURE 9 – OPTOCOUPLER (WIKIPEDIA, 2007)

Final Report EECE474 Team 3

Revision #18 Page 11

MOSFET

 The other component of the H-bridge circuit is a MOSFET, used as a

switch. A MOSFET has 3 pin: Gate, Source and Drain. Voltage change across

these pins would change the mode of operation of a MOSFET. The Gate pin is

connected to the collector of the Optocoupler through a 100 Ω resistor, the

Source pin is connected directly to the 7 volt battery and the Drain pin is

connected to the DC motor.

 In an H-bridge, MOSFET functions as a switch and therefore triode

mode is preferred. When two of the following conditions are satisfied: voltage

across the gate and source (VGS) is larger than the threshold voltage (Vth), and

the difference of VGS and Vth is larger than the voltage across drain and

source(VDS). On the datasheet of P12PF06 MOSFET, the maximum threshold

voltage is 4 volt. When the Optocoupler is powered, it would satisfy the first

condition since the VGS would be at approximately 7V which is larger than

maximum Vth. The difference of the VGS and Vth is now 3Vand it must be larger

than VDS to satisfy the second condition. The resistor across Drain and Source

(RDS) is less than 0.2 Ωand the current across the Drain and Source (IDS) would

be 2 A at maximum. Therefore VDS is approximately 0.4 V using Ohm’s law. Both conditions are satisfied

when the Optocoupler is turned on and therefore the MOSFET would allow current flow through the

motor.

H-BRIDGE

 When all the components are connected together and powered, the H-bridge would work as

following. Whenever the microcontroller outputs 0V, the motor is turned on at full strength. Since the

microcontroller outputs PWM, the motor would be running when the pulses are at 0V. The longer the

signal stays at 0V the faster the motor would spin, up to its maximum. Therefore we can control the

motor speed by changing the duty cycle of the PWM signal.

At a duty cycle of 0%, the motor, for example, would be running at full speed while at duty cycle

of 100%, the motor would stop completely.

FIGURE 12 – DUTY CYCLE CONTROLLED MOTORS

FIGURE 10 – MOSFET CHIP

(STMICROELECTRONICS,

2007)

FIGURE 11 – MOSFET GATES

(STMICROELECTRONICS,

2007)

Final Report EECE474 Team 3

Revision #18 Page 12

TESTING

 The H-bridge circuit was first built on the breadboard for testing purposes. After it was

constructed, the circuit response was observed on the display of the oscilloscope. The H-bridge behaves

as expected: a shorter duty cycle square wave signal would produce a faster motor speed while a longer

one would slow the motor.

 At one point during testing, we used the signal generator to produce the PWM signal to the H-

bridge. This worked quite well, and we were able to get the helicopter to hover, if somewhat unstably. At

one point the testing wire we used to connect the signal generator to the helicopter became accidentally

disconnected, causing an instantaneous 0V on the PWM input, causing an instantaneous jump up to full

motor speed. This sudden jump in current draw shorted out the MOSFETS, and cause a small crash, since

we were unprepared for the sudden increase in thrust, and the helicopter jumped up into the air in a very

unstable fashion.

 A PCB was produced for the microcontroller + H-bridge circuit, but a design flaw which had the

microcontroller and the motors power by the same battery caused us to split up the circuit into 3 parts,

on separate boards: microcontroller + voltage regulator, RF circuitry, and the H-bridge. Figure 13 below

shows the H-bridge setup for our helicopter.

FIGURE 13 – H-BRDIGE CONNECTED TO MOTORS

100

R7
100

100

100

+V

+V

+V

+V

100k

100k

100k

100k

STP12PF06

STP12PF06

Q1
STP12PF06

STP12PF06

M4

M3

M2

M1

LTV-847

LTV-847

LTV-847

LTV-847

100

R7
100

100

100

+V

+V

+V

100k

100k

100k

100k

STP12PF06

STP12PF06

Q1
STP12PF06

STP12PF06

M4

M3

M2

M1

LTV-847

LTV-847

LTV-847

LTV-847

Final Report EECE474 Team 3

Revision #18 Page 13

RF COMMUNICATION
 After debating on multiple RF TX/RX schemes, our group decided on using the TWS-434A and

TWS-434 RF TX/RX ready-made chips for our project. The reason behind the decision is that these chips

are easy to configure, consume very little power, and were readily available in the ECE library.

 The transmitter consists of 4 pins: positive power supply pin, ground pin, input pin and antenna

pin. To power the transmitter circuit, the positive power supply and ground must be connected

accordingly. The input signal is connected to the input pin. For the purpose of our report, an extended

antenna is not required since we are testing the project within a very short range.

FIGURE 14 – RF TRANSMITTER CHIP(RENTRON)

 The receiver consists of 8 pins: three ground pins, two positive power supply pin, one linear

output pin, one digital output pin and one antenna pin. The digital output pin is becomes the input to the

microcontroller. An extended antenna is also not used for the same reason stated above.

FIGURE 15 – RF RECEIVER CHIP (RENTRON)

 The input to the transmitter needed to be a signal the microcontroller could easily recognize. The

easiest way we found of implementing this was with a 555 timer producing a square wave pulse. This

square wave pulse was fed into the transmitters input, and came out the receiver’s output when

activated.

Final Report EECE474 Team 3

Revision #18 Page 14

FIGURE 16 – 555 TIMER CIRCUIT ATTACHED TO RF TRANSMITTER

The switch is our pushbutton activator, which when pushed, sends the “Go” signal to the

receiver, which then is tied into an input port on the microcontroller.

 Testing of the Rx/Tx circuit shows that there is some degree of noise in the system, simply due to

all the electromagnetic interference travelling through the air, but in general, when activated, the signal

was sent through the air nice and strong, with very little attenuation, and only a slight time delay.

MEASURING TILT

ADXL330 ACCELEROMETER

To measure the tilt in the helicopter, an accelerometer was used. Traditionally, accelerometers

are used to measure the acceleration of moving objects, but it can also be used to measure the tilt of an

object if the acceleration due to gravity and acceleration due to other movements can be read separately.

This will be mounted in the center of the helicopter, underneath the foam block, oriented such that each

of the four booms are running along the sensor’s X or Y axes, and where it will receive the most balanced

noise distribution. Figure 17 shows the wiring schematic for our accelerometer, the ADXL330 by Analog

Devices.

ANT1

A
n
t

V
c
c

D
a
t
a

G
n
d

S1

Gnd
Trg
Out
Rst Ctl

Thr
Dis
Vcc

U1
555

C1
.01uF

C2
.01uF

+

9V Battery
R3
20k

R1
51k

R2
22k

Final Report EECE474 Team 3

Revision #18 Page 15

FIGURE 17 – ADXL330 ACCELEROMETER CIRCUIT

The ADXL330 is a three axis accelerometer capable of measuring ±3 g of movement, which is

enough to measure the tilts we are expecting, with a sensitivity of 300mV/g. It’s powered by 3.3V and

only uses 320μA of current. When the accelerometer is perpendicular to gravity, it will have an output in

the range of 1.1V to 1.3V. The output of the sensor is an analog voltage output proportional to the

acceleration. The bandwidth is set to 50Hz by default, but can be changed up to 1,600Hz by adding

capacitors at the outputs. The output of the ADXL330 will go directly into one of the microcontroller’s

built in A/D ports. Because the rest of the electronics require +5V Vcc, a voltage regulator was required to

bring down the 5V to 3.3V: we used the LM317 adjustable voltage regulator.

The microcontroller used for this project, ATMEGA644V, is 8-bit. This means at 3.3v operating

voltage, 255 samples of the input voltage can be obtained for each step. This gives the controller a

resolution of 12.9mV.

To obtain tilt from acceleration, the following equation is used:

out

offset

2

1 sin

where

 V Acceleration Output in volts

V Accelerometer 0g offset (reference point)

 sensitivity (300mV/g for ADXL330)

1g = Earth's gravity (9.81m/s)

out offset

V
V V g

g

V

g

-1

angel of tilt

=sin
out offsetV V

V

g

Final Report EECE474 Team 3

Revision #18 Page 16

Using the above equation, it can be seen that as the angle of tilt increases, the accelerometer

loses accuracy. Figure 18 shows a graph of Vout vs. Degrees of tilt. As can be seen, the readings become

non-linear as the level of tilt increases to perpendicular.

FIGURE 18 – ADXL330 ACCURACY

It can be calculated that the resolution of the ADXL330 is less than one degree near the zero

degree mark, and more than six degrees near the 90 degree mark. For our purpose, the helicopter will

experience more tilt near the zero degree mark rather than the 90 degree mark. It is safer to slow down

or land the helicopter when it is near 90 degrees rather than try to control it because the helicopter can

get out of control quite quickly when it is severely tilted. According to Analog devices, the z axis, which

we’re not using, is less sensitive.

 Nominal Output (V) Max(V) Min(V)

X axis 1.16 1.56 0.74

Y axis 1.24 1.70 0.87

Z axis 1.19 1.45 0.97

TABLE 1 – 3 AXES ACCELEROMETER OUTPUT

ULTRASONIC RANGE FINDER

 It was determined that we needed a way for the helicopter to know by itself how high off the

ground it is. This is necessary to enable automatic soft landing. When landing the helicopter without the

range finder, it is easy to shut off the motors late/early. If the motors are shut off late, the helicopter will

land at a high velocity which can cause a crash, leading to undesirable damages. If the motors are shut off

early, it gives the same effect of dropping the helicopter from a distance, which also causes damages to

the helicopter. With the range finder, the landing can be automated using the microcontroller. The range

finders will also used to determine if the helicopter has reached a desired height.

 We chose to use the Maxbotix LV-MaxSonar-EZ1 Sonar Module for our range finder. The most

attractive feature on the EZ-1 is that it can output the range in three different ways: analog, PWM, and

ASCII. This gave us more flexibility in terms of programming and reading the values. We chose the PWM

output because we can check the values on the oscilloscope to test/debug the circuit as well as easy and

0 10 20 30 40 50 60 70 80
1150

1200

1250

1300

1350

1400

1450

1500

Degrees

V
o
u
t

Final Report EECE474 Team 3

Revision #18 Page 17

accurate readings for the microcontroller. The EZ-1 operates at 5V with 42 kHz ultrasonic ping. It only has

one sonar module; therefore it doesn’t have a central blind spot when there are two sonar modules. It

has a 2.5 cm resolution and can measure from 15.24 cm to 645 cm. To read the PWM, every 147μs can be

interpreted as one inch (2.5 cm), while the PWM has a period of 50ms. We mounted the range finder on

the bottom of the polycarbonate plate. Since all it needs is a clear line of sight with the ground, it was not

important that it be placed in the middle of the helicopter.

FIGURE 19 – EZ1 SONAR MODULE

The EZ-1 needs to calibrate the distance at every startup, and needs a clearance of at least seven

inches, preferably closer to fourteen. The module will be calibrated after the first cycle. Because our

helicopter itself has a height less than seven inches, we’ll need to manually give the helicopter a seven

inch clearance each time. The actual position of the EZ-1 is about 3 cm off the ground.

During testing, we encountered a lot of noise as the distance increased. The sensor becomes

more sensitive to the surroundings. However, this is expected because as the distance increases, the

sound wave from the EZ-1 will grow in size, which will bounce off surrounding objects causing the reading

of the actual distance to be less accurate.

SYSTEM CONTROL
 A linearized four rotor helicopter can be simulated with Matlab. We will use this as a guideline

for our controller.

The dynamics of the helicopter can be described by the following equations (x and y only):

1

1

1 2

1 2

tan
()

cos

() tan

1
(())

()

Z Z d

d

m x r mg

m y r mg y g

z a z a z z
m

a a

Final Report EECE474 Team 3

Revision #18 Page 18

FIGURE 20 – MATLAB SIMULATIONS FOR CONTROLLER RESPONSE TIME

The calculations have initial conditions of three meters and zero tilt. As seen from the above

graphs, the helicopter will take about 10 seconds to reach steady state while the velocity and angular

momentum will experience spikes initially. Though the graph only shows the y values, we expect the x

values to behave very similarly.

MCU

Accelerometer

Reference

Point

Ultrasonic

Range Finder

-
+

Output

FIGURE 21 – FEEDBACK CONTROL LOOP OF HELICOPTER

The control loop can be summarized as follows:

 Reference point obtained by sampling the accelerometer outputs 20 times and finding an

average when helicopter is first turned on and is on a flat surface.

 Current accelerometer outputs are compared with the reference point to determine the

error/tilt. Will allow a 10% steady state error.

 MCU will adjust the Motor speed accordingly

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

Time (s)

y
 (

m
)

0 5 10 15 20 25 30 35 40 45 50
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Time (s)

d
y
/d

t

0 5 10 15 20 25 30 35 40 45 50
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

Time (s)

R
o
ll

0 5 10 15 20 25 30 35 40 45 50
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Time (s)

A
n
g
u
la

r
V

e
o
lc

it
y
 R

o
ll

(d
e
g
re

e
s
/s

)

Final Report EECE474 Team 3

Revision #18 Page 19

 Although there are no inputs going into the accelerometer, tilt measurements by the

accelerometer is directly proportional to the output of the MCU, i.e. The speed of the motors.

The ultrasonic range finder will interrupt the MCU when it reaches the targeted height or when landing

height has reached.

MICROCONTROLLER

The motions of the helicopter are manipulated by a single microcontroller – the Atmel

Atmega644. It is a high-performance, low-power AVR® 8-bit Microcontroller. The microcontroller chosen

has 40 pins with DIP packaging. It is capable of operating at 8MHz and upon stabilizing the default

internal clock frequency is adjusted to 1MHz. We selected this chip for our helicopter because it consists

of 3 timers/counters, of which there are two 8-bit and one 16-bit timer with separate pre-scalers. Each

timer/counter can generate 2 individual modulated waveforms allowing a maximum of 6 channels of

pulse to be sent at designated outputs. We decided to use the 4 channels from the two 8-bit timers for

motor speed controls. The 16-bit timer is used to measure the pulse width of input signals captured from

the ultrasonic sensor which will be further explained in later sections. Moreover, the microcontroller has

8 analog to digital input channels that allows analog signals from the designated accelerometer – the

AXDL330, to be converted into discrete digital data for further processing. Figure 22 below shows the

general configuration diagram of the microcontroller:

FIGURE 22 – HARDWARE CONFIGURATION OF MICROCONTROLLER

Final Report EECE474 Team 3

Revision #18 Page 20

ANALOG TO DIGITAL CONVERSION(ADC)
 The Atmega644 microcontroller has 8 ADC channels in Port A, and each of them can be used to

convert analog signals into 10-bits digital data into the ADC data register. While in normal mode, Port A is

simply an I/O port and its ADC function is disabled. To enable the ADC mode, special registers need to be

configured and the reference voltage has to be set to properly convert the analog signals.

ADC SETUP

 To set Port A into ADC mode, special registers need to be configured. There are 3 main registers

that we need to get the conversion to start properly: ADMUX, ADCSRA, and ADCSRB. Figure 23 below

shows the ADMUX register and its corresponding selection bits.

FIGURE 23 – ADMUX REGISTERS FOR ADC

The two higher bits, bit 6 and 7, are used to configured the voltage reference for the conversion.

If the analog voltage ranges from 0V to 1.1V or 2.56V, then the two bits should be set 10 or 11,

respectively. If the analog voltage achieve as high as the power supply voltage (Vcc), then the two bits

should be set to 01, otherwise 00 for a designated voltage. If a designated voltage level is required for the

conversion, the voltage should be applied to the AREF pin.

 The analog signals will be divided into a 10-bit digital data, that is, 1024 levels into a special

register called the ADC register. In our case, the accelerometer outputs voltages in the range between 0

to 2.6V, so it is sufficient to use the internal voltage reference mode for the conversion. Bit-5 of the

ADMUX register determines the precision of the conversion. Realistically, the converted digital data is

stored in two registers in the ADC register, the ADCH and ADCL registers, of which 2 of the 10 bits are

separated from the remaining bits. Here bit-5 in the ADMUX register determines whether the data should

be left or right adjusted, that is, whether the higher 8 bits of data should be together or vice versa. For the

best accuracy of the measurement result, we used the full 10 bit data for further calculations. The

remaining five bits in the ADMUX register determines the channel that performs the A-to-D conversion

since only one channel can be converted at a time. Since our accelerometer outputs to more than one

channel, we need to switch channels continuously (the X, Y and Z analog signal inputs) to receive digital

data from each of them. Channels can be switched by adjusting the lower five bits in the ADMUX register.

 Next, we have to configure the ACDSRA and ACDSRB registers. The two registers are shown

below in Figure 24 and Figure 25 respectively.

Final Report EECE474 Team 3

Revision #18 Page 21

FIGURE 24 – ADCSRA - ADC CONTROL AND STATUS REGISTER A

FIGURE 25 – ADCSRB - ADC CONTROL AND STATUS REGISTER B

To enable the analog-digital conversion function, the ADEN bit in the ADCSRA register must be

set all the time. The ADSC bit can be set to start a conversion. Once the conversion is completed, the

ADSC bit is cleared by the hardware automatically. If the ADC interrupt is enabled, that is, the ADIE bit is

set prior to the conversion, then the ADIF bit will be set along with ADSC bit when a conversion is

completed. Auto-trigger is not required for our helicopter so its corresponding bit (ADATE) remains clear

all the time. The lower 3 bits in the ADCSRA register sets the clock rate of the conversion. It is important

to initialize this clock bit to 001 (clock speed without pre-scaling), because the conversion would be begin

until the clock rate is set. The time of a single conversion usually takes about 12 system clock cycles, and

with pre-scaling, the conversion takes approximately multiples of the scaling factor and the 12 cycles. At

the end, there’s no external triggering source and we want the A-to-D conversion to be performed

continuously, so we cleared all the ACDSRB bits to set our conversion mode to free-running mode.

ULTRASONIC RANGE FINDER MEASUREMENT
 The ultra-sonic sensor is used to measure the height between the ground and the helicopter

during its flight. The output signals from the sensor can either be an analog or digital signal, depending on

our preference for detection. The changes in height detected by the sensor can be measured by either the

analog signal (with changes equal to 10mV per inch), or digital signal (changes in width of pulses at 147us

per inch). For comparison, we have tested both methods of detections and evaluated their outcomes for

the best method. If the analog signal is used, we need to perform an A-to-D conversion similar to the

conversions of accelerometer signals mentioned in earlier sections. If the digital signal is used, then we

need to measure the time elapses of the pulses to determine the height. The following section will explain

the methods of measuring the width of pulses in greater details.

PULSE WIDTH MEASUREMENT
 We can measure the width of a pulse by making use of the timer1’s special feature – Input

capture function. Basically we use the input capturing feature in timer1 to detect the rising and falling

edge of pulses, and measure the width in between to obtain the time elapsed. Since the ultrasonic sensor

changes its pulse width when it detects a different height, we could obtain the approximate height if we

measured the length of the pulse correctly. It works by synchronizing a timer that counts forever with the

Final Report EECE474 Team 3

Revision #18 Page 22

input capture functions. We first record the counted value starting at the rising edge then the falling edge,

and calculate their differences to obtain the number of counts in between.

FIGURE 26 – PULSE WIDTH MEASUREMENT

 Knowing the system’s clock speed, we can then calculate the period of time at which the

counting lasts. At the end, we can divide the time by our sensor resolution (147us/inch) to find the

distance that the pulse width represents. If there is pre-scaling of the timer’s counting frequency, the

formula can be adjusted by multiplying the scaling factor into the counted period. The formulas for the

calculations are as follows:

SETUP FOR INPUT CAPTURE MODE
 Unlike timer 0 and timer 2, timer 1 now needs to operate in normal mode, instead of PWM

mode. This can be done by setting the COM1A and COM1B pins in TCCR1A register all to 0, and WGM11

and WGM10 to 0 as well. Further, WGM13 and WGM12 in TCCR1B have to be cleared as well in order to

set the operating mode to normal mode. The two registers are shown below in figure 7 and 8.

FIGURE 27 – TCCR1A TIMER 1 CONTROL REGISTER A

FIGURE 28 – TCCR1B TIMER 1 CONTROL REGISTER B

 Next the ICNC1 bit in TCCR1B register needs to be set to activate the noise canceller which

reduces noise captured by the microcontroller. The lower 3 bits in Register B is the clock selection bit, we

selected a scaling factor of 8 for moderate counting speed. Bit-6 in Register B is the edge selection bit for

Final Report EECE474 Team 3

Revision #18 Page 23

which there would be an interrupt signal when the designated edge is detected. In the software, we

wrote our program such that an interrupt is triggered when the signal toggles. Further, we find the

number of counts by subtracting the rising edge count from the falling edge count, which yields the

number of counts during the high time. Eventually, we are able to measure the width of pulses by using

the formula shown above.

PULSE WIDTH MODULATION
 As previously mentioned, the motor speed control is accomplished by utilizing a pulse width

modulation (PWM) scheme together with the H-bridge circuit.

PWM is accomplished by using the 16-bit Timer/Counter 1 built-in in the ATmega644V chip.

Timer 1 was chosen for this purpose since it is the only Timer module that allows for both frequency and

phase correction.

To activate the PWM generation mode specific registers in Timer/Counter 1 needs to be set.

FIGURE 29 – TCCR1A TIMER/COUNTER1 CONTROL REGISTER A

FIGURE 30 – TCCR1B TIMER/COUNTER1 CONTROL REGISTER B

Specifically, we need Timer/Counter1 to operate in mode 9. This means setting the WGM1n bits

in both TCCR1A and TCCR1B needs to be set. The COM1An and COM1Bn bit in TCCR1A define the output

compare modes. In our case, we would like the output compare to match the value in the Output

Compare Register and toggle OCnA on compare match. The CS bits in TCCR1B select the clock source to be

used by the Timer/Counter. We also disabled the Input Capture Edge Select as well as Input Capture Noise

Canceller since we’re not doing any input capturing or comparing. Lastly and very importantly, the

PRTIM1 bit in the Power Reduction Register must be written to zero to enable Timer/Counter1 Module.

In the end we have both registers set up as follows:

COM1A1 COM1A0 COM1B1 COM1B0 - - WGM11 WGM10

1 0 1 0 0 0 0 0

ICNC1 ICES1 - WGM13 WGM12 CS12 CS11 CS10

0 0 0 1 0 0 1 0
TABLE 2 – REGISTER SETUP FOR PWM

The Frequency and Phase Correct mode works in dual slope mode meaning the counter module

counts continuously up till it matches the value in the Register and then counts back down.

Final Report EECE474 Team 3

Revision #18 Page 24

FIGURE 31 – PHASE & FREQUENCY CORRECT PWM TIMING DIAGRAM

By setting the OCR1x Register we can control when the OC1x pin toggles, generating a pulse at

variable duty cycle.

MOTOR SPEED CONTROL

 With the data obtained from the accelerometer through ADC and the distance obtained from

timer 1, we adjust the speed of our motors based on the changes of those parameters. As mentioned in

earlier sections, we control the motor’s speed by adjusting the duty cycles send to the H-bridge. In our

case, the motors rotate when the signals are active low. As a result, we increase the speed of motors by

sending more “low” signals and decrease the speed of the motors by sending more “high” signals. The

signals sent to each motor are different and they vary by the data received from the accelerometer and

sonic sensor.

 In order for the helicopter to maintain its stability during flight, the microcontroller needs to

attempt to balance the helicopter in the flat position all the time. For example, if the helicopter is tilted to

one of its side, the motor on the lower side needs to increase its rotation speed to lift its side up, while

the opposite side tends to lower its rotation speed and allow the helicopter to be rotated. We set the

duty cycles to range from 0 to 255, with 0 to be all low and 255 to be all high. While maintaining a stable

flight in horizontal, we expected that the duty cycle to each motor should be nearly the same.

Unfortunately each poles and gears do not have the exact same length and weight, and so slightly larger

rotation speed on one side than its opposite side is required for the helicopter to remain balanced. A

series of test data through observation in the oscilloscope and trial and error is shown here.

Final Report EECE474 Team 3

Revision #18 Page 25

Height = 1m Duty Cycles Approximation in Percentages (%)

Angles Rotated
To Front

Motor 1 Front Motor 2 Back Motor 3 Left Motor 4 Right

0o 45% 45% 40% 45%
0o 42% 45% 40% 45%
0o 45% 43% 42% 43%
0o 47% 45% 40% 40%

30o 32% 63% 30% 30%
30o 27% 70% 30% 25%
30o 25% 70% 35% 33%
30o 30% 65% 30% 30%
60o 12% 80% 20% 25%
60o 15% 70% 30% 20%
60o 20% 85% 25% 20%
60o 10% 80% 25% 25%

TABLE 3 – OBSERVATION OF DUTY CYCLE CHANGES FROM TURNING HELICOPTER

 From testing, we observed that the accelerometer is very sensitive to even small tilt, and the tilt

could be tracked accurately by the microcontroller. One difficulty arises when balancing the helicopter

and it is the amount of adjustment need to be made to each motor. It seems logical to increase the thrust

of one motor by the same amount as the thrust that its opposite one had decreased by. The

aerodynamics associated with balancing an object in the air becomes tedious because the helicopter has

trouble recognizing the balanced position.

 While balancing the helicopter in the steady horizontal position is challenging, we tried to at least

maintain the helicopter at a constant height to avoid unexpected crashes. As mentioned earlier, we don’t

use the Z-direction signal from the accelerometer to balance the vertical position, but instead we use the

ultrasonic sensor to measure the distance between ground and sensor. Table 4 below is shown to

illustrate the sensitivity of the ultrasonic sensor.

 Pulse Width Changes in milliseconds (Note: 0.147ms/inch)

0 inch Minimal 12 inches +0.18ms 18 inches +0.01ms
2 inches +0.29ms 13 inches +0.15ms 19 inches +0.00ms
4 inches +0.29ms 14 inches +0.12ms 20 inches +0.00ms
6 inches +0.25ms 15 inches +0.10ms 21 inches +0.00ms
8 inches +0.23ms 16 inches +0.05ms 22 inches +0.00ms
10 inches +0.20ms 17 inches +0.02ms 23 inches +0.00ms

TABLE 4 – ULTRASONIC SENSOR SENSITIVITY

This sensor was tested in open fields, meaning it was pointed towards an open area with a

person walking further from the sensor all the while observing the changes. We realized that the sensor

sense changes in distance more accurately when the target is a large plain surface, instead of an open

area with lots of movements near it. We could still make use of the sensor however, because we are only

pointing the sensor towards the floor, which is just a flat and clear surface. The sensor becomes

insensitive when the distance between object and itself is further apart to approximately 20 inches.

Final Report EECE474 Team 3

Revision #18 Page 26

According to the datasheet of the sensor, it should be able to sense changes within 600 inches! We

supposed that there were lots of interferences nearby that had caused the inaccuracy of the

measurements.

PCB LAYOUT
 We implemented the circuit shown in Figure 32 onto a printed circuit board (which can be seen

in Figure 33). It’s important to note that the PCB does not contain the circuit for the accelerometer and

the ISP programmer circuit for the microcontroller. Those missing circuits are actually external

components on separate boards or devices. On the PCB, there are drill holes for all external components

to be soldered together with the main PCB.

After various tests and verifications, we found that the circuit would be more stable if the control

systems have different groundings than the motors, because both were controlled by separate voltage

sources, so it would be better if they are separated to avoid different grounding references.

FIGURE 32 – CIRCUIT DIAGRAM FOR WHOLE SYSTEM

Final Report EECE474 Team 3

Revision #18 Page 27

FIGURE 33 – PCB SUBMITTED

 As mentioned earlier, it was only after this PCB was printed that we realized that we had

designed it for one single power source, when in fact we needed two – one for the motors, one for the

circuit. Thus, this PCB was not actually used in the helicopter, though the same circuit (with modifications

made to the power, of course, to implement two separate power sources) was used.

VOLTAGE REGULATOR
 We required a voltage regulator to power our microcontroller, since power was coming from a

9V battery, and the microcontroller operates at 5V. As shown above in, the regulator we used is the

LM7805. It is a common series of three-terminal positive voltage regulators which employ built-in current

limiting, thermal shutdown, and safe-operating area protection which makes them virtually immune to

damage from output overloads. It delivers 5V at its output and we have two capacitors connected to

maintain constant voltage input and noise-free voltage output.

Final Report EECE474 Team 3

Revision #18 Page 28

FIGURE 34 – SCHEMATIC FOR 5V VOLTAGE REGULATOR

DATA TRANSFER
 The connection interface to our computer for programming is shown below in Figure 35. It

requires a communication device named MAX232. It is a dual driver/receiver that includes a capacitive

voltage generator to supply EIA-232 voltage levels from a single 5-V supply. Each receiver converts EIA-

232 inputs to 5-V TTL/CMOS levels. The MAX232 is commonly used by programmers to configure

microcontrollers through serial ports. This is an optional feature that we decided not to implement onto

our circuit board.

FIGURE 35 – SCHEMATIC OF RS232 CONNECTION TO MICROCONTROLLER

Final Report EECE474 Team 3

Revision #18 Page 29

ASSESSMENT & ANALYSIS

 The final helicopter we produced at the end of the project was no where near as fully functional

as we had set out to build at the beginning of term. Several problems were encountered which made us

simplify the helicopter.

PARTS

 Too much time was spent during the time of this project waiting for parts to be shipped. The

motors and associated hardware are examples of this. Though we new of a Canadian online source where

we could obtain these parts, we attempted to find them through other sources in an effort to minimize

cost. Not only was the shipment of those parts delayed, but it was discovered, through testing of the one

sample motor we had obtained, that the teeth of the pinions attached to the motor shafts were too small

for the gears we had. Thus poor planning on our part led to us not having the motors and the motor

mounts until ¾ of the way through the project.

PCB

 Miscommunication between group members led to the PCB being designed with a single power

source – the 7.4V LiPo battery – being used for both the motors and the microcontroller. We decided, too

late, that it would not be a good idea to do this, so we were forced to solder some proto boards manually,

resulting in a much less attractive circuit, split up into different parts.

 Despite this, having the circuit split up into different proto boards allowed us greater flexibility to

make changes and additions. For example, we were unable to obtain a dedicated 3.3V voltage regulator

for the Vdd source for the accelerometer, and so ended up creating a circuit with a variable regulator and

a potentiometer. This would have been much more difficult had everything been done on a printed circuit

board.

H-BRIDGE

 Twice during testing of the helicopter, we shorted out the MOSFET’s of the H-bridge. The first

time it happened, we assumed it was due to the sudden current surge they underwent due to a wire

accidentally disconnecting. But the second time, the cause of the short was unknown. It was speculated

that the Styrofoam the electronics were mounted on built up a static charge that caused the short, but

this was not confirmed. Some way of ensuring that the H-bridge was more stable and robust should have

been implemented.

FRAME

 Because of the limited time we had to assemble everything once parts arrived, as mentioned

above, the mounting of the electronics onto the helicopter had to be done in a less than desired way. In

other words, it ended up looking ‘messier’ than it should have.

 The frame itself ended up being very strong, stronger than it needed to be. Despite the difficulty

in making it perfectly balanced, it ended up being quite close to balanced.

Final Report EECE474 Team 3

Revision #18 Page 30

FIRMWARE

 The most difficult part of our project was designing the software to run it. Because none of the

group members had any real experience programming such a device in the C language, we had to learn

from scratch. It was in an effort to simplify this programming experience that we reduced the end goal of

a fully functional helicopter that could be flown in any direction to one that simply executes a flight plan

of take-off, hover, landing. Despite this, we were still able to enable the helicopter to fly by itself, not

tethered to any external device.

 Given more time, the hardware is there to be taken advantage of, and it would not be a big

stretch to implement the more advanced functionality. A couple more wires soldered on the circuit board,

a more advanced RF transmitter, and a firmware upgrade is all that would be required for the fully-

functional flying helicopter originally envisioned.

IN GENERAL

 The largest problem that plagued Team 3 during this term of ECE474 was the slow progress made

on the individual components. We kept telling each other that such and such module would get done by

‘next week’, and that continued on through the weeks. Also, waiting for parts led some team members to

be more idle than they ought to have been. To have made this helicopter better, team 3 ought to have

stuck more rigidly to the timeline, enforcing intra-week goals of having various sections complete, ready

for testing and amalgamation with the other parts.

 Despite the problems, we believe that there is nothing fundamentally wrong with the helicopter.

It was not too heavy, it was quite well balanced. It was able to get off the ground successfully. It goes to

show that with more time and effort, UAV’s in the form of four –rotor helicopters are perfectly feasible,

and can be designed to be easily flown.

FIGURE 36 – EZ-FLY HELICOPTER

Final Report EECE474 Team 3

Revision #18 Page 31

REFERENCES

#1 Nikko Radio Remote Control Vehicles. (2006). Dragan Flyer V - New Version! Retrieved May 25, 2007,

from #1 Radio Remote Control Vehicles: http://store.1-

nikkoradioremotecontrolvehicles.com/drfl4dehewim.html

Blair Lee, J. M. (1999). RC Car Controller. Retrieved 6 17, 2007, from

http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s1999/blair/RCcar.html

Chen, Crystal; Novick, Greg; Shimano, Kirk. (n.d.). RISC Architecture. (Stanford University) Retrieved June

17, 2007, from Sophomore College 2000 Class: http://cse.stanford.edu/class/sophomore-

college/projects-00/risc/

CrazyAboutGadgets. (2007). Bladerunner Helicopter. Retrieved May 24, 2007, from CrazyAboutGadgets

Gadget listings: http://www.crazyaboutgadgets.com/detail.asp?ID=242

DC-DC Converter Tutorial. (n.d.). Retrieved 6 17, 2007, from http://www.maxim-

ic.com.cn/appnotes.cfm/appnote_number/2031/

DiBona, C. (2006, February 22). Silverlit X-UFO's Gyro 'issues'. Retrieved May 24, 2007, from Egofood Blog:

http://egofood.blogspot.com/2006/02/silverlit-x-ufos-gyro-issues.html

DPRG: Low Cost Gyro-Accelerometer Combo Sensor. (2003, January). Retrieved May 25, 2007, from

http://www.dprg.org/projects/2003-01a/

Draganfly Innovations Inc. (n.d.). Retrieved 6 17, 2007, from RC Toys: http://www.rctoys.com/rc-toys-and-

parts/DF-VTIPRO/RC-HELICOPTERS-DRAGANFLYER-VTI-PRO.html

DraganFly Innovations Inc. (2007, May). The Future of RC, UAVs and Robotics. Retrieved May 25, 2007,

from DraganFlyer SAVS: http://www.rctoys.com/rc-toys-and-parts/DF-SAVS/RC-HELICOPTERS-

DRAGANFLYER-SAVS.html

Helpful RC Transmitter Information. (2007, May). Retrieved May 25, 2007, from Remote-Control-RC-

Hobby: http://www.remote-control-rc-hobby.com/rc-transmitter.html

Hobby Zone. (2007). Hobby Zone - Batteries, LiPo, Battery, 7.4V 800maH 2-Cell LiPo, JST/Balance.

Retrieved July 23, 2007, from Hobby Zone RC helicopter and plane parts:

http://secure.hobbyzone.com/catalog/HZ/catalog/catalog_batterieslipo/EFLB0990.html

K'NEX Standard Light Grey Rod - 7 1/2 in. (2007). Retrieved May 24, 2007, from

http://www.knex.com/building_toys/stard_light_gray_rod_7_12_in.php

MIT. (2007). UAV SWARM Health Management Projeft. Retrieved May 2007, from Aerospace Controls

Laboratory at MIT: http://vertol.mit.edu/index.html

R/C Airplane World. (2007). RC UFO(Silverlit X). Retrieved May 24, 2007, from R/C Airplane World:

http://www.rc-airplane-world.com/rc-ufo.html

Final Report EECE474 Team 3

Revision #18 Page 32

RadioShack.com. (n.d.). Retrieved 6 17, 2007, from

http://www.radioshack.com/product/index.jsp?productId=2476767&cp=2032062&pg=2&f=Taxonomy%2

FRSK%2F2032062&categoryId=2032062&kw=controller&kwCatId=2032062&parentPage=search

Rentron. (n.d.). TWS-434/RWS-434 Data Sheet. Retrieved July 24, 2007, from Reynolds Electroncis:

http://www.rentron.com/files/NEW_TWS_RWS_DOC.pdf

Robotics, Wright Hobbies. (n.d.). Wright Hobbies Robotics. Retrieved 6 17, 2007, from ATmega644:

http://www.wrighthobbies.net/catalog/product_info.php?cPath=22&products_id=111

Seddon, J. (1990). Basic Helicopter Aerodynamics. Lodon: BSP Professional Books.

Silverlit Toys Manufactory Ltd. (2007, May). SilverLit Flying Club. Retrieved May 24, 2007, from X-UFO

Highest Tech R/C Flying Toy: http://www.silverlit-flyingclub.com/xufo.htm

STMicroelectronics. (2007). Datasheet for STP12PF06. Retrieved July 24, 2007, from STMicroelectronics:

http://www.st.com/stonline/books/pdf/docs/11236.pdf

Titan PS2 Wire Gamepad User Manual. (n.d.). Retrieved 6 17, 2007, from

http://rsk.imageg.net/graphics/uc/rsk/Support/ProductManuals/2600239_PM_EN.pdf

Wikipedia. (2007). Optocoupler. Retrieved July 24, 2007, from Wikipedia:

http://en.wikipedia.org/wiki/Optocoupler

Final Report EECE474 Team 3

Revision #18 Page 1

APPENDIX A – C CODE FOR MICROCONTROLLER

Definition.h

#define DEFINITION

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/iom644.h>

// General Functions
#define BIT(x) (1 << (x))
#define SETBITS(x,y) ((x) |= (y))
#define CLEARBITS(x,y) ((x) &= (~(y)))

#define SETBIT(x,y) SETBITS((x), (BIT((y))))
#define CLEARBIT(x,y) CLEARBITS((x), (BIT((y))))
#define BITSET(x,y) ((x) & (BIT(y)))
#define BITCLEAR(x,y) !BITSET((x), (y))
#define BITSSET(x,y) (((x) & (y)) == (y))
#define BITSCLEAR(x,y) (((x) & (y)) == 0)
#define BITVAL(x,y) (((x)>>(y)) & 1)

// Global Variables

// ADC Functions
#define Clear_ADC_Int_Flag() (ADCSRA |= _BV(ADIF)) // Clear Interrupt Flag
#define ADC_Int_Enable() (ADCSRA |= _BV(ADIE)) // Interrupt Enable
#define ADC_Int_Disable() (ADCSRA &= ~_BV(ADIE)) // Interrupt Disable

void ADC_initial(void);
void ADC_Channel(int channel);
unsigned short a2dConvert10bit(unsigned int ADC_channel);
void delay(unsigned char time);
ISR(PCINT0_vect);
ISR(PCINT1_vect);
ISR(PCINT2_vect);

int X_direction_Set(void);
int Y_direction_Set(void);

// PWM Functions
// Timer/Counter 0
void Timer0_initial(void);
ISR(TIMER0_COMPA_vect);

Final Report EECE474 Team 3

Revision #18 Page 2

ISR(TIMER0_COMPB_vect);
void Set_Timer0_DutyCycle_A(int dutyA);
void Set_Timer0_DutyCycle_B(int dutyB);

// Timer/Counter 1

#define Num_Sonars 4

#define Set_Input_AIN0_Rising() (TCCR1B |= _BV(ICES1)) // Set capture rising edge
#define Is_Input_AIN0_Rising() (TCCR1B & _BV(ICES1)) // Is capture rising edge?
#define Set_Input_AIN0_Falling() (TCCR1B &= ~_BV(ICES1)) // Set capture falling edge
#define Is_Input_AIN0_Falling() ~(TCCR1B & _BV(ICES1)) // Is capture falling edge?

#define Clear_IC_Flag() TIFR1 |= _BV(ICF1) // Clear input capture flag

#define US_PER_INCH 149.28

#define ENABLE_SONAR() SETBIT(PORTB,2)
#define DISABLE_SONARS() CLEARBIT(PORTB,2)

#define IC1_Enable() (TIMSK1 |= _BV(ICIE1)) // Input capture enable
#define IC1_Disable() (TIMSK1 &= ~_BV(ICIE1)) // Input capture disable

uint32_t sonar_get_dist(void);
void sonar_start_reading(void);

void Timer1_initial(void);
ISR(TIMER1_CAPT_vect);

// Timer/Counter 2
void Timer2_initial(void);
ISR(TIMER2_COMPA_vect);
ISR(TIMER2_COMPB_vect);
void Set_Timer2_DutyCycle_A(int dutyA);
void Set_Timer2_DutyCycle_B(int dutyB);

adc.c

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/iom644.h>
#include <D:\474Project\definition.h>

volatile unsigned int ADC_Complete_Flag;

void ADC_initial(void) // ADC initialization
 {
 ADMUX = 0xC0; // ADC0, Right adjust,Internal 2.56 Voltage Reference

Final Report EECE474 Team 3

Revision #18 Page 3

 // Enable ADC and set prescaler to 1/2*1.00MHz = 500 KHz

 ADCSRA = 0x88;//8F; //88; // Enable ADC, ADC interrupt, prescaler 128
 ADCSRB = 0x00; // Free Running Mode
 }

void ADC_Channel(int channel) // Switching channels between PCINT0, PCINT1, PCINT2
 {
 if(channel == 0)
 {
 ADMUX = 0xC0;
 }
 if(channel == 1)
 {
 ADMUX = 0xC1;
 }
 if(channel == 2)
 {
 ADMUX = 0xC2;
 }
 if(channel == 5)
 {
 ADMUX = 0xC5;
 }
 }

int X_direction_Set(void)
 {
 return a2dConvert10bit(0);
 }

int Y_direction_Set(void)
 {
 return a2dConvert10bit(1);
 }

unsigned short a2dConvert10bit(unsigned int ADC_channel)
 {
 int ADCHL;
 int ADCHLfake;

 ADC_Complete_Flag = 0; // clear conversion complete flag
 ADC_Channel(ADC_channel); // set channel
 SETBIT(ADCSRA, ADIF); // clear hardware "conversion complete" flag
 SETBIT(ADCSRA, ADSC); // start conversion

 while(bit_is_set(ADCSRA, ADSC)); // wait until conversion complete

Final Report EECE474 Team 3

Revision #18 Page 4

// ADCHL = ADC;
 ADCHL = ADCL;
 ADCHLfake = ADCH;
 // CAUTION: MUST READ ADCL BEFORE ADCH!!!

 return ADCHL-30; // Change the subtraction value
to change set point;
 }

void delay(unsigned char time) //Function to generate time delay
 {
 int l;
 int m;

 for(l=0; l<time; l++)
 {
 for(m=0;m<10000;m++)
 {};
 }
 }

ISR(PCINT0_vect) // ADC interrupt routine for PA0
 {
 PORTD = 0xFF;
 }

ISR(PCINT1_vect) // ADC interrupt routine for PA1
 {
 PORTD = 0xFF;
 }

ISR(PCINT2_vect) // ADC interrupt routine for PA2
 {
 PORTD = 0xFF;
 }

ISR(ADC_vect) // ADC Complete Interrupt
 {
 ADC_Complete_Flag = 1;
 }

Pwm.c

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/iom644.h>
#include <D:\474Project\definition.h>

static uint16_t time_rising_edge;

Final Report EECE474 Team 3

Revision #18 Page 5

static uint16_t time_falling_edge;
uint16_t ov_counter;
uint32_t count;

void Timer0_initial(void) // Counter 0 Initialization
 {
 TCCR0A = 241; // Set to Phase correct PWM mode
 // Set OC0A to 1 when up-counting match
 // Set OC0A to 0 when down-counting match

 TCCR0B = 1; // Start clock with no prescaling: factor = 1

 TIMSK0 = 0;//6; // Compare match A & B Interrupt Enable

 OCR0A = 80; // Match value for register A
 OCR0B = 80; // Match value for register B
 }

ISR(TIMER0_COMPA_vect) // Timer 0 Output A Interrupt Routine
 {
 Set_Timer0_DutyCycle_A(duty);
 SETBIT(PORTB,0);
 }

ISR(TIMER0_COMPB_vect) // Timer 0 Output B Interrupt Routine
 {
 Set_Timer0_DutyCycle_B(duty);
 SETBIT(PORTB,1);
 }

void Set_Timer0_DutyCycle_A(int dutyA) // Set duty cycle for output A
 {
 OCR0A = dutyA;
 }

void Set_Timer0_DutyCycle_B(int dutyB) // Set duty cycle for output B
 {
 OCR0B = dutyB;
 }

///

void Timer1_initial(void)
 {
 // Analog Comparator Unit
 ADCSRB = 0x00;
 ACSR = 4;//36; //4; //12;//44; // Analog Comparator ACO and Input
Capture Enable

Final Report EECE474 Team 3

Revision #18 Page 6

 // Interrupt Enable
 TCCR1A = 0; // Normal Mode

 TCCR1B = 130;//132;//129;//133;//131;//130;//129; // No clock,
Prescaling Clk/1
 // Noise canceller Enable
 // Positive edge trigger
 }

ISR(TIMER1_OVF_vect)
 {
 ov_counter++; // Increment overflow counter when overflow occurs
 }

uint32_t sonar_get_dist()
 {
 count = (uint32_t)time_falling_edge - (uint32_t)time_rising_edge + (uint32_t)ov_counter;

 // Number of counts between edges

 // Each count is 1/1MHz seconds = 0.000001s
 uint32_t count_time = count * 0.000001*8; // Length of Time = # of counts
x time per count

 // Counted Time in Seconds
 uint32_t count_time_micro = count_time * 1000000; // Converted counted time to micro
seconds

 // 147us per inch

// distance = (uint8_t)(difference / (int16_t)(US_PER_INCH));
// uint32_t distance = (uint32_t)(count_time_micro/(uint32_t)US_PER_INCH);
 uint32_t distance = count_time_micro/US_PER_INCH;
 if (distance > 5)
 {
 SETBIT(PORTB,0);
 }
 else
 {
 //CLEARBIT(PORTB,0);
 }

 return distance;
 }

void sonar_start_reading()
 {

Final Report EECE474 Team 3

Revision #18 Page 7

 Set_Input_AIN0_Rising(); // Set input trigger rising edge
 Clear_IC_Flag(); // Clear input capture flag
 IC1_Enable(); // Input Capture Interrupt Enable
 SETBIT(TIMSK1,0); // Overflow Interrupt Enable
 }

ISR(TIMER1_CAPT_vect) // Timer 1 Input Capture Interrupt
 {
 if (Is_Input_AIN0_Rising())
 {
 time_rising_edge = ICR1;

 Set_Input_AIN0_Falling();
 Clear_IC_Flag();

 PORTD = _BV(PD0);

 ov_counter = 0;
 }
 else
 {
 time_falling_edge = ICR1;

 Set_Input_AIN0_Rising();
 Clear_IC_Flag();

 sonar_get_dist();

 PORTD = _BV(PD1);
 }
 }

///

void Timer2_initial(void) // Counter 2 Initialization
 {
 TCCR2A = 241; // Set to Phase correct PWM mode
 // Set OC2A to 1 when up-counting match
 // Set OC2A to 0 when down-counting match

 TCCR2B = 1; // Start clock with no prescaling: factor = 1

 TIMSK2 = 0;//6; // Compare match A & B Interrupt Enable

 OCR2A = 80; // Match value for register A
 OCR2B = 80; // Match value for register B
 }

Final Report EECE474 Team 3

Revision #18 Page 8

ISR(TIMER2_COMPA_vect) // Timer 2 Output A Interrupt Routine
 {
 Set_Timer2_DutyCycle_A(duty);
 SETBIT(PORTB,0);
 }

ISR(TIMER2_COMPB_vect) // Timer 2 Output B Interrupt Routine
 {
 Set_Timer2_DutyCycle_B(duty);
 SETBIT(PORTB,1);
 }

void Set_Timer2_DutyCycle_A(int dutyA) // Set duty cycle for output A
 {
 OCR2A = dutyA;
 }

void Set_Timer2_DutyCycle_B(int dutyB) // Set duty cycle for output B
 {
 OCR2B = dutyB;
 }

Main.c

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/iom644.h>
#include <D:\474Project\definition.h>

void Global_initial(void)
 {
 DDRA = 0x00; // All pins in Port A are inputs
 DDRB = 0x19;//18; // PB3 & PB4 of Port B are outputs
 DDRC = 0xFF; // All pins in Port C are outputs (Not Used)
 DDRD = 0xFF; // PD4 & PD5 of Port D are outputs
 }

int main(void)
{
 Global_initial();
 ADC_initial();

 Timer0_initial();
 Timer1_initial();
 Timer2_initial();
 sonar_start_reading();

 sei(); // DO NOT FORGET THIS or I register won't be on!
 // Enable Interrupt

Final Report EECE474 Team 3

Revision #18 Page 9

 int ADCHZ;

 while(1)
 {
 ADCHZ = a2dConvert10bit(7)+30;
 if(ADCHZ > 100)
 {
 PORTD = 0x0F;
 }
 else
 {
 PORTD = 0x00;
 }

 }

 int X_set = X_direction_Set(); // Initialize X setpoint
 int Y_set = X_direction_Set(); // Initialize Y setpoint

 int ADCHX; // Initialize Motor speed variables
 int ADCHY;

 uint8_t Motor_1 = 120; // Beginning motor duty out of 255
 uint8_t Motor_2 = 120;
 uint8_t Motor_3 = 120;
 uint8_t Motor_4 = 120;

 while(1)
 {
 if(ADCHX > 145) // (650/1024)*(2.56v) ~ 1.625v
 {
 PORTD = 0x0F;
 }
 else
 {
 PORTD = 0x00;
 }

 ADCHX = a2dConvert10bit(0); // X direction Status

 if(Motor_1 == 255)
 {
 Motor_1 = 254;
 }
 else if(Motor_1 == 0)
 {
 Motor_1 = 1;
 }

Final Report EECE474 Team 3

Revision #18 Page 10

 if(ADCHX < X_set-5) // MOTOR 1
 {
 Motor_1 = Motor_1 + 1;// Changing the Incremental value changes the setpoint
 Set_Timer0_DutyCycle_A(Motor_1); // Higher it is the more HIGH time
 }
 else if(ADCHX > X_set+5)
 {
 Motor_1 = Motor_1 - 1;
 Set_Timer0_DutyCycle_A(Motor_1);
 }

 if(Motor_2 == 255)
 {
 Motor_2 = 254;
 }
 else if(Motor_2 == 0)
 {
 Motor_2 = 1;
 }
 if(ADCHX < X_set-5) // MOTOR 2
 {
 Motor_2 = Motor_2 - 1; // Changing the Incremental value changes the setpoint
 Set_Timer0_DutyCycle_B(Motor_2); // Higher it is the more HIGH time
 }
 else if(ADCHX > X_set+5)
 {
 Motor_2 = Motor_2 + 1;
 Set_Timer0_DutyCycle_B(Motor_2);
 }

 ADCHY = a2dConvert10bit(0); // Y direction Status

 if(Motor_3 == 255)
 {
 Motor_3 = 254;
 }
 else if(Motor_3 == 0)
 {
 Motor_3 = 1;
 }
 if(ADCHY < Y_set-5) // MOTOR 3
 {
 Motor_3 = Motor_3 + 1;// Changing the Incremental value changes the setpoint
 Set_Timer2_DutyCycle_A(Motor_3); // Higher it is the more HIGH time
 }
 else if(ADCHY > Y_set+5)
 {
 Motor_3 = Motor_3 - 1;

Final Report EECE474 Team 3

Revision #18 Page 11

 Set_Timer2_DutyCycle_A(Motor_3);
 }

 if(Motor_4 == 255)
 {
 Motor_4 = 254;
 }
 else if(Motor_4 == 0)
 {
 Motor_4 = 1;
 }
 if(ADCHY < Y_set-5) // MOTOR 4
 {
 Motor_4 = Motor_4 - 1; // Changing the Incremental value changes the setpoint
 Set_Timer2_DutyCycle_B(Motor_4); // Higher it is the more HIGH time
 }
 else if(ADCHY > Y_set+5)
 {
 Motor_4 = Motor_4 + 1;
 Set_Timer2_DutyCycle_B(Motor_4);
 }
 }
 return 0;
}

